In [2]:
# -----------------------------------------
# DO NOT EDIT THIS CELL
# -----------------------------------------
# The only exception is if you need to run "!pip install" to install a package prior to importing
# This cell loads the required Python packages
# Import geospatial libraries
import geodatasets
import geopandas as gpd
from shapely.geometry import Point, LineString, Polygon
# Import visualization and utility libraries
import matplotlib.pyplot as plt
import numpy as np
c:\Users\joshu\anaconda3\Lib\site-packages\paramiko\pkey.py:82: CryptographyDeprecationWarning: TripleDES has been moved to cryptography.hazmat.decrepit.ciphers.algorithms.TripleDES and will be removed from this module in 48.0.0. "cipher": algorithms.TripleDES, c:\Users\joshu\anaconda3\Lib\site-packages\paramiko\transport.py:219: CryptographyDeprecationWarning: Blowfish has been moved to cryptography.hazmat.decrepit.ciphers.algorithms.Blowfish and will be removed from this module in 45.0.0. "class": algorithms.Blowfish, c:\Users\joshu\anaconda3\Lib\site-packages\paramiko\transport.py:243: CryptographyDeprecationWarning: TripleDES has been moved to cryptography.hazmat.decrepit.ciphers.algorithms.TripleDES and will be removed from this module in 48.0.0. "class": algorithms.TripleDES,
In [3]:
# -----------------------------------------
# DO NOT EDIT THIS CELL
# -----------------------------------------
# This cell shows available geospatial datasets.
# Scroll through the output and locate the one named "natregimes".
# You will use it in the next step.
geodatasets.data
Out[3]:
geodatasets.Bunch
5 items
-
geodatasets.Bunch53 items
-
geodatasets.Datasetgeoda.airbnb
- url
- https://geodacenter.github.io/data-and-lab//data/airbnb.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Airbnb rentals, socioeconomics, and crime in Chicago
- geometry_type
- Polygon
- nrows
- 77
- ncols
- 21
- details
- https://geodacenter.github.io/data-and-lab//airbnb/
- hash
- a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824
- filename
- airbnb.zip
-
geodatasets.Datasetgeoda.atlanta
- url
- https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Atlanta, GA region homicide counts and rates
- geometry_type
- Polygon
- nrows
- 90
- ncols
- 24
- details
- https://geodacenter.github.io/data-and-lab//atlanta_old/
- hash
- a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09
- filename
- atlanta_hom.zip
- members
- ['atlanta_hom/atl_hom.geojson']
-
geodatasets.Datasetgeoda.cars
- url
- https://geodacenter.github.io/data-and-lab//data/Abandoned_Vehicles_Map.csv
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2011 abandoned vehicles in Chicago (311 complaints).
- geometry_type
- Point
- nrows
- 137867
- ncols
- 21
- details
- https://geodacenter.github.io/data-and-lab//1-source-and-description/
- hash
- 6a0b23bc7eda2dcf1af02d43ccf506b24ca8d8c6dc2fe86a2a1cc051b03aae9e
- filename
- Abandoned_Vehicles_Map.csv
-
geodatasets.Datasetgeoda.charleston1
- url
- https://geodacenter.github.io/data-and-lab//data/CharlestonMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Charleston, SC MSA and counties
- geometry_type
- Polygon
- nrows
- 117
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//charleston-1_old/
- hash
- 4a4fa9c8dd4231ae0b2f12f24895b8336bcab0c28c48653a967cffe011f63a7c
- filename
- CharlestonMSA.zip
- members
- ['CharlestonMSA/sc_final_census2.gpkg']
-
geodatasets.Datasetgeoda.charleston2
- url
- https://geodacenter.github.io/data-and-lab//data/CharlestonMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Charleston, SC MSA
- geometry_type
- Polygon
- nrows
- 42
- ncols
- 60
- details
- https://geodacenter.github.io/data-and-lab//charleston2/
- hash
- 056d5d6e236b5bd95f5aee26c77bbe7d61bd07db5aaf72866c2f545205c1d8d7
- filename
- CharlestonMSA2.zip
- members
- ['CharlestonMSA2/CharlestonMSA2.gpkg']
-
geodatasets.Datasetgeoda.chicago_health
- url
- https://geodacenter.github.io/data-and-lab//data/comarea.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Chicago Health + Socio-Economics
- geometry_type
- Polygon
- nrows
- 77
- ncols
- 87
- details
- https://geodacenter.github.io/data-and-lab//comarea_vars/
- hash
- 4e872adb552786eae2fcd745524696e5e4cd33cc9a6c032471c0e75328871401
- filename
- comarea.zip
-
geodatasets.Datasetgeoda.chicago_commpop
- url
- https://geodacenter.github.io/data-and-lab//data/chicago_commpop.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Chicago Community Area Population Percent Change for 2000 and 2010
- geometry_type
- Polygon
- nrows
- 77
- ncols
- 9
- details
- https://geodacenter.github.io/data-and-lab//commpop/
- hash
- 1dbebb50c8ea47e2279ea819ef64ba793bdee2b88e4716bd6c6ec0e0d8e0e05b
- filename
- chicago_commpop.zip
- members
- ['chicago_commpop/chicago_commpop.geojson']
-
geodatasets.Datasetgeoda.chile_labor
- url
- https://geodacenter.github.io/data-and-lab//data/flma.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Labor Markets in Chile (1982-2002)
- geometry_type
- Polygon
- nrows
- 64
- ncols
- 140
- details
- https://geodacenter.github.io/data-and-lab//FLMA/
- hash
- 4777072268d0127b3d0be774f51d0f66c15885e9d3c92bc72c641a72f220796c
- filename
- flma.zip
- members
- ['flma/FLMA.geojson']
-
geodatasets.Datasetgeoda.cincinnati
- url
- https://geodacenter.github.io/data-and-lab//data/walnuthills_updated.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2008 Cincinnati Crime + Socio-Demographics
- geometry_type
- Polygon
- nrows
- 457
- ncols
- 73
- details
- https://geodacenter.github.io/data-and-lab//walnut_hills/
- hash
- d6871dd688bd14cf4710a218d721d34f6574456f2a14d5c5cfe5a92054ee9763
- filename
- walnuthills_updated.zip
- members
- ['walnuthills_updated']
-
geodatasets.Datasetgeoda.cleveland
- url
- https://geodacenter.github.io/data-and-lab//data/cleveland.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2015 sales prices of homes in Cleveland, OH.
- geometry_type
- Point
- nrows
- 205
- ncols
- 10
- details
- https://geodacenter.github.io/data-and-lab//clev_sls_154_core/
- hash
- 49aeba03eb06bf9b0d9cddd6507eb4a226b7c7a7561145562885c5cddfaeaadf
- filename
- cleveland.zip
-
geodatasets.Datasetgeoda.grid100
- url
- https://geodacenter.github.io/data-and-lab//data/grid100.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Grid with simulated variables
- geometry_type
- Polygon
- nrows
- 100
- ncols
- 37
- details
- https://geodacenter.github.io/data-and-lab//grid100/
- hash
- 5702ba39606044f71d53ae6a83758b81332bd3aa216b7b7b6e1c60dd0e72f476
- filename
- grid100.zip
- members
- ['grid100/grid100s.gpkg']
-
geodatasets.Datasetgeoda.groceries
- url
- https://geodacenter.github.io/data-and-lab//data/grocery.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2015 Chicago supermarkets
- geometry_type
- Point
- nrows
- 148
- ncols
- 8
- details
- https://geodacenter.github.io/data-and-lab//chicago_sup_vars/
- hash
- ead10e53b21efcaa29b798428b93ba2a1c0ba1b28f046265c1737712fa83f88a
- filename
- grocery.zip
- members
- ['grocery/chicago_sup.shp', 'grocery/chicago_sup.dbf', 'grocery/chicago_sup.shx', 'grocery/chicago_sup.prj']
-
geodatasets.Datasetgeoda.guerry
- url
- https://geodacenter.github.io/data-and-lab//data/guerry.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Mortal statistics of France (Guerry, 1833)
- geometry_type
- Polygon
- nrows
- 85
- ncols
- 24
- details
- https://geodacenter.github.io/data-and-lab//Guerry/
- hash
- 80d2b355ad3340fcffa0a28e5cec0698af01067f8059b1a60388d200a653b3e8
- filename
- guerry.zip
- members
- ['guerry/guerry.shp', 'guerry/guerry.dbf', 'guerry/guerry.shx', 'guerry/guerry.prj']
-
geodatasets.Datasetgeoda.health
- url
- https://geodacenter.github.io/data-and-lab//data/income_diversity.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Health, Income + Diversity
- geometry_type
- Polygon
- nrows
- 3984
- ncols
- 65
- details
- https://geodacenter.github.io/data-and-lab//co_income_diversity_variables/
- hash
- eafee1063040258bc080e7b501bdf1438d6e45ba208954d8c2e1a7562142d0a7
- filename
- income_diversity.zip
- members
- ['income_diversity/income_diversity.shp', 'income_diversity/income_diversity.dbf', 'income_diversity/income_diversity.shx', 'income_diversity/income_diversity.prj']
-
geodatasets.Datasetgeoda.health_indicators
- url
- https://geodacenter.github.io/data-and-lab//data/healthIndicators.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Chicago Health Indicators (2005-11)
- geometry_type
- Polygon
- nrows
- 77
- ncols
- 32
- details
- https://geodacenter.github.io/data-and-lab//healthindicators-variables/
- hash
- b43683245f8fc3b4ab69ffa75d2064920a1a91dc76b9dcc08e288765ba0c94f3
- filename
- healthIndicators.zip
-
geodatasets.Datasetgeoda.hickory1
- url
- https://geodacenter.github.io/data-and-lab//data/HickoryMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Hickory, NC MSA and counties
- geometry_type
- Polygon
- nrows
- 68
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//hickory1/
- hash
- 4c0804608d303e6e44d51966bb8927b1f5f9e060a9b91055a66478b9039d2b44
- filename
- HickoryMSA.zip
- members
- ['HickoryMSA/nc_final_census2.geojson']
-
geodatasets.Datasetgeoda.hickory2
- url
- https://geodacenter.github.io/data-and-lab//data/HickoryMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Hickory, NC MSA
- geometry_type
- Polygon
- nrows
- 29
- ncols
- 56
- details
- https://geodacenter.github.io/data-and-lab//hickory2/
- hash
- 5e9498e1ff036297c3eea3cc42ac31501680a43b50c71b486799ef9021679d07
- filename
- HickoryMSA2.zip
- members
- ['HickoryMSA2/HickoryMSA2.geojson']
-
geodatasets.Datasetgeoda.home_sales
- url
- https://geodacenter.github.io/data-and-lab//data/kingcounty.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2014-15 Home Sales in King County, WA
- geometry_type
- Point
- nrows
- 21613
- ncols
- 22
- details
- https://geodacenter.github.io/data-and-lab//KingCounty-HouseSales2015/
- hash
- b979f0eb2cef6ebd2c761d552821353f795635eb8db53a95f2815fc46e1f644c
- filename
- kingcounty.zip
- members
- ['kingcounty/kc_house.shp', 'kingcounty/kc_house.dbf', 'kingcounty/kc_house.shx', 'kingcounty/kc_house.prj']
-
geodatasets.Datasetgeoda.houston
- url
- https://geodacenter.github.io/data-and-lab//data/houston_hom.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Houston, TX region homicide counts and rates
- geometry_type
- Polygon
- nrows
- 52
- ncols
- 24
- details
- https://geodacenter.github.io/data-and-lab//houston/
- hash
- d3167fd150a1369d9a32b892d3b2a8747043d3d382c3dd81e51f696b191d0d15
- filename
- houston_hom.zip
- members
- ['houston_hom/hou_hom.geojson']
-
geodatasets.Datasetgeoda.juvenile
- url
- https://geodacenter.github.io/data-and-lab//data/juvenile.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Cardiff juvenile delinquent residences
- geometry_type
- Point
- nrows
- 168
- ncols
- 4
- details
- https://geodacenter.github.io/data-and-lab//juvenile/
- hash
- 811cfcfa613578214d907bfbdd396c6e02261e5cda6d56b25a6f961148de961c
- filename
- juvenile.zip
- members
- ['juvenile/juvenile.shp', 'juvenile/juvenile.shx', 'juvenile/juvenile.dbf']
-
geodatasets.Datasetgeoda.lansing1
- url
- https://geodacenter.github.io/data-and-lab//data/LansingMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Lansing, MI MSA and counties
- geometry_type
- Polygon
- nrows
- 117
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//lansing1/
- hash
- 724ce3d889fa50e7632d16200cf588d40168d49adaf5bca45049dc1b3758bde1
- filename
- LansingMSA.zip
- members
- ['LansingMSA/mi_final_census2.geojson']
-
geodatasets.Datasetgeoda.lansing2
- url
- https://geodacenter.github.io/data-and-lab//data/LansingMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Lansing, MI MSA
- geometry_type
- Polygon
- nrows
- 46
- ncols
- 56
- details
- https://geodacenter.github.io/data-and-lab//lansing2/
- hash
- 7657c05d3bd6090c4d5914cfe5aaf01f694601c1e0c29bc3ecbe9bc523662303
- filename
- LansingMSA2.zip
- members
- ['LansingMSA2/LansingMSA2.geojson']
-
geodatasets.Datasetgeoda.lasrosas
- url
- https://geodacenter.github.io/data-and-lab//data/lasrosas.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Corn yield, fertilizer and field data for precision agriculture, Argentina, 1999
- geometry_type
- Polygon
- nrows
- 1738
- ncols
- 35
- details
- https://geodacenter.github.io/data-and-lab//lasrosas/
- hash
- 038d0e82203f2875b50499dbd8498ca9c762ebd8003b2f2203ebc6acada8f8fd
- filename
- lasrosas.zip
- members
- ['lasrosas/rosas1999.gpkg']
-
geodatasets.Datasetgeoda.liquor_stores
- url
- https://geodacenter.github.io/data-and-lab//data/liquor.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2015 Chicago Liquor Stores
- geometry_type
- Point
- nrows
- 571
- ncols
- 3
- details
- https://geodacenter.github.io/data-and-lab//liq_chicago/
- hash
- 6a483a6a7066a000bc97bfe71596cf28834d3088fbc958455b903a0938b3b530
- filename
- liquor.zip
- members
- ['liq_Chicago.shp', 'liq_Chicago.dbf', 'liq_Chicago.shx', 'liq_Chicago.prj']
-
geodatasets.Datasetgeoda.malaria
- url
- https://geodacenter.github.io/data-and-lab//data/malariacolomb.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Malaria incidence and population (1973, 95, 93 censuses and projections until 2005)
- geometry_type
- Polygon
- nrows
- 1068
- ncols
- 51
- details
- https://geodacenter.github.io/data-and-lab//colomb_malaria/
- hash
- ca77477656829833a4e3e384b02439632fa28bb577610fe5aef9e0b094c41a95
- filename
- malariacolomb.zip
- members
- ['malariacolomb/colmunic.gpkg']
-
geodatasets.Datasetgeoda.milwaukee1
- url
- https://geodacenter.github.io/data-and-lab//data/MilwaukeeMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Milwaukee, WI MSA
- geometry_type
- Polygon
- nrows
- 417
- ncols
- 35
- details
- https://geodacenter.github.io/data-and-lab//milwaukee1/
- hash
- bf3c9617c872db26ea56f20e82a449f18bb04d8fb76a653a2d3842d465bc122c
- filename
- MilwaukeeMSA.zip
- members
- ['MilwaukeeMSA/wi_final_census2_random4.gpkg']
-
geodatasets.Datasetgeoda.milwaukee2
- url
- https://geodacenter.github.io/data-and-lab//data/MilwaukeeMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Milwaukee, WI MSA
- geometry_type
- Polygon
- nrows
- 83
- ncols
- 60
- details
- https://geodacenter.github.io/data-and-lab//milwaukee2/
- hash
- 7f74212d63addb9ab84fac9447ee898498c8fafc284edcffe1f1ac79c2175d60
- filename
- MilwaukeeMSA2.zip
- members
- ['MilwaukeeMSA2/MilwaukeeMSA2.gpkg']
-
geodatasets.Datasetgeoda.ncovr
- url
- https://geodacenter.github.io/data-and-lab//data/ncovr.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- US county homicides 1960-1990
- geometry_type
- Polygon
- nrows
- 3085
- ncols
- 70
- details
- https://geodacenter.github.io/data-and-lab//ncovr/
- hash
- e8cb04e6da634c6cd21808bd8cfe4dad6e295b22e8d40cc628e666887719cfe9
- filename
- ncovr.zip
- members
- ['ncovr/NAT.gpkg']
-
geodatasets.Datasetgeoda.natregimes
- url
- https://geodacenter.github.io/data-and-lab//data/natregimes.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- NCOVR with regimes (book/PySAL)
- geometry_type
- Polygon
- nrows
- 3085
- ncols
- 74
- details
- https://geodacenter.github.io/data-and-lab//natregimes/
- hash
- 431d0d95ffa000692da9319e6bd28701b1156f7b8e716d4bfcd1e09b6e357918
- filename
- natregimes.zip
-
geodatasets.Datasetgeoda.ndvi
- url
- https://geodacenter.github.io/data-and-lab//data/ndvi.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Normalized Difference Vegetation Index grid
- geometry_type
- Polygon
- nrows
- 49
- ncols
- 8
- details
- https://geodacenter.github.io/data-and-lab//ndvi/
- hash
- a89459e50a4495c24ead1d284930467ed10eb94829de16a693a9fa89dea2fe22
- filename
- ndvi.zip
- members
- ['ndvi/ndvigrid.gpkg']
-
geodatasets.Datasetgeoda.nepal
- url
- https://geodacenter.github.io/data-and-lab//data/nepal.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Health, poverty and education indicators for Nepal districts
- geometry_type
- Polygon
- nrows
- 75
- ncols
- 62
- details
- https://geodacenter.github.io/data-and-lab//nepal/
- hash
- d7916568fe49ff258d0f03ac115e68f64cdac572a9fd2b29de2d70554ac2b20d
- filename
- nepal.zip
-
geodatasets.Datasetgeoda.nyc
- url
- https://geodacenter.github.io/data-and-lab///data/nyc.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Demographic and housing data for New York City subboroughs, 2002-09
- geometry_type
- Polygon
- nrows
- 55
- ncols
- 35
- details
- https://geodacenter.github.io/data-and-lab//nyc/
- hash
- a67dff2f9e6da9e11737e6be5a16e1bc33954e2c954332d68bcbf6ff7203702b
- filename
- nyc.zip
-
geodatasets.Datasetgeoda.nyc_earnings
- url
- https://geodacenter.github.io/data-and-lab//data/lehd.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Block-level Earnings in NYC (2002-14)
- geometry_type
- Polygon
- nrows
- 108487
- ncols
- 71
- details
- https://geodacenter.github.io/data-and-lab//LEHD_Data/
- hash
- 771fe11e59a16d4c15c6471d9a81df5e9c9bda5ef0a207e77d8ff21b2c16891b
- filename
- lehd.zip
-
geodatasets.Datasetgeoda.nyc_education
- url
- https://geodacenter.github.io/data-and-lab//data/nyc_2000Census.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- NYC Education (2000)
- geometry_type
- Polygon
- nrows
- 2216
- ncols
- 57
- details
- https://geodacenter.github.io/data-and-lab//NYC-Census-2000/
- hash
- ecdf342654415107911291a8076c1685bd2c8a08d8eaed3ce9c3e9401ef714f2
- filename
- nyc_2000Census.zip
-
geodatasets.Datasetgeoda.nyc_neighborhoods
- url
- https://geodacenter.github.io/data-and-lab//data/nycnhood_acs.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Demographics for New York City neighborhoods
- geometry_type
- Polygon
- nrows
- 195
- ncols
- 99
- details
- https://geodacenter.github.io/data-and-lab//NYC-Nhood-ACS-2008-12/
- hash
- aeb75fc5c95fae1088093827fca69928cee3ad27039441bb35c03013d2ee403f
- filename
- nycnhood_acs.zip
-
geodatasets.Datasetgeoda.orlando1
- url
- https://geodacenter.github.io/data-and-lab//data/OrlandoMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Orlando, FL MSA and counties
- geometry_type
- Polygon
- nrows
- 328
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//orlando1/
- hash
- e98ea5b9ffaf3e421ed437f665c739d1e92d9908e2b121c75ac02ecf7de2e254
- filename
- OrlandoMSA.zip
- members
- ['OrlandoMSA/orlando_final_census2.gpkg']
-
geodatasets.Datasetgeoda.orlando2
- url
- https://geodacenter.github.io/data-and-lab//data/OrlandoMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Orlando, FL MSA
- geometry_type
- Polygon
- nrows
- 94
- ncols
- 60
- details
- https://geodacenter.github.io/data-and-lab//orlando2/
- hash
- 4cd8c3469cb7edea5f0fb615026192e12b1d4b50c22b28345adf476bc85d0f03
- filename
- OrlandoMSA2.zip
- members
- ['OrlandoMSA2/OrlandoMSA2.gpkg']
-
geodatasets.Datasetgeoda.oz9799
- url
- https://geodacenter.github.io/data-and-lab//data/oz9799.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Monthly ozone data, 1997-99
- geometry_type
- Point
- nrows
- 30
- ncols
- 78
- details
- https://geodacenter.github.io/data-and-lab//oz96/
- hash
- 1ecc7c46f5f42af6057dedc1b73f56b576cb9716d2c08d23cba98f639dfddb82
- filename
- oz9799.zip
- members
- ['oz9799/oz9799.csv']
-
geodatasets.Datasetgeoda.phoenix_acs
- url
- https://geodacenter.github.io/data-and-lab//data/phx2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Phoenix American Community Survey Data (2010, 5-year averages)
- geometry_type
- Polygon
- nrows
- 985
- ncols
- 18
- details
- https://geodacenter.github.io/data-and-lab//phx/
- hash
- b2f6e196bacb6f3fe1fc909af482e7e75b83d1f8363fc73038286364c13334ee
- filename
- phx2.zip
- members
- ['phx/phx.gpkg']
-
geodatasets.Datasetgeoda.police
- url
- https://geodacenter.github.io/data-and-lab//data/police.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Police expenditures Mississippi counties
- geometry_type
- Polygon
- nrows
- 82
- ncols
- 22
- details
- https://geodacenter.github.io/data-and-lab//police/
- hash
- 596270d62dea8207001da84883ac265591e5de053f981c7491e7b5c738e9e9ff
- filename
- police.zip
- members
- ['police/police.gpkg']
-
geodatasets.Datasetgeoda.sacramento1
- url
- https://geodacenter.github.io/data-and-lab//data/sacramento.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Sacramento MSA
- geometry_type
- Polygon
- nrows
- 403
- ncols
- 32
- details
- https://geodacenter.github.io/data-and-lab//sacramento1/
- hash
- 72ddeb533cf2917dc1f458add7c6042b93c79b31316ae2d22f1c855a9da275f9
- filename
- sacramento.zip
- members
- ['sacramento/sacramentot2.gpkg']
-
geodatasets.Datasetgeoda.sacramento2
- url
- https://geodacenter.github.io/data-and-lab//data/SacramentoMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Sacramento MSA
- geometry_type
- Polygon
- nrows
- 125
- ncols
- 59
- details
- https://geodacenter.github.io/data-and-lab//sacramento2/
- hash
- 3f6899efd371804ea8bfaf3cdfd3ed4753ea4d009fed38a57c5bbf442ab9468b
- filename
- SacramentoMSA2.zip
- members
- ['SacramentoMSA2/SacramentoMSA2.gpkg']
-
geodatasets.Datasetgeoda.savannah1
- url
- https://geodacenter.github.io/data-and-lab//data/SavannahMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Savannah, GA MSA and counties
- geometry_type
- Polygon
- nrows
- 77
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//savannah1/
- hash
- df48c228776d2122c38935b2ebbf4cbb90c0bacc68df01161e653aab960e4208
- filename
- SavannahMSA.zip
- members
- ['SavannahMSA/ga_final_census2.gpkg']
-
geodatasets.Datasetgeoda.savannah2
- url
- https://geodacenter.github.io/data-and-lab//data/SavannahMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Savannah, GA MSA
- geometry_type
- Polygon
- nrows
- 24
- ncols
- 60
- details
- https://geodacenter.github.io/data-and-lab//savannah2/
- hash
- 5b22b84a8665434cb91e800a039337f028b888082b8ef7a26d77eb6cc9aea8c1
- filename
- SavannahMSA2.zip
- members
- ['SavannahMSA2/SavannahMSA2.gpkg']
-
geodatasets.Datasetgeoda.seattle1
- url
- https://geodacenter.github.io/data-and-lab//data/SeattleMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Seattle, WA MSA and counties
- geometry_type
- Polygon
- nrows
- 664
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//seattle1/
- hash
- 46fb75a30f0e7963e6108bdb19af4d7db4c72c3d5a020025cafa528c96e09daa
- filename
- SeattleMSA.zip
- members
- ['SeattleMSA/wa_final_census2.gpkg']
-
geodatasets.Datasetgeoda.seattle2
- url
- https://geodacenter.github.io/data-and-lab//data/SeattleMSA2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 1998 and 2001 Zip Code Business Patterns (Census Bureau) for Seattle, WA MSA
- geometry_type
- Polygon
- nrows
- 145
- ncols
- 60
- details
- https://geodacenter.github.io/data-and-lab//seattle2/
- hash
- 3dac2fa5b8c8dfa9dd5273a85de7281e06e18ab4f197925607f815f4e44e4d0c
- filename
- SeattleMSA2.zip
- members
- ['SeattleMSA2/SeattleMSA2.gpkg']
-
geodatasets.Datasetgeoda.sids
- url
- https://geodacenter.github.io/data-and-lab//data/sids.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- North Carolina county SIDS death counts
- geometry_type
- Polygon
- nrows
- 100
- ncols
- 15
- details
- https://geodacenter.github.io/data-and-lab//sids/
- hash
- e2f7b210b9a57839423fd170e47c02cf7a2602a480a1036bb0324e1112a4eaab
- filename
- sids.zip
- members
- ['sids/sids.gpkg']
-
geodatasets.Datasetgeoda.sids2
- url
- https://geodacenter.github.io/data-and-lab//data/sids2.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- North Carolina county SIDS death counts and rates
- geometry_type
- Polygon
- nrows
- 100
- ncols
- 19
- details
- https://geodacenter.github.io/data-and-lab//sids2/
- hash
- b5875ffbdb261e6fa75dc4580d67111ef1434203f2d6a5d63ffac16db3a14bd0
- filename
- sids2.zip
- members
- ['sids2/sids2.gpkg']
-
geodatasets.Datasetgeoda.south
- url
- https://geodacenter.github.io/data-and-lab//data/south.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- US Southern county homicides 1960-1990
- geometry_type
- Polygon
- nrows
- 1412
- ncols
- 70
- details
- https://geodacenter.github.io/data-and-lab//south/
- hash
- 8f151d99c643b187aad37cfb5c3212353e1bc82804a4399a63de369490e56a7a
- filename
- south.zip
- members
- ['south/south.gpkg']
-
geodatasets.Datasetgeoda.spirals
- url
- https://geodacenter.github.io/data-and-lab//data/spirals.csv
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- Synthetic spiral points
- geometry_type
- Point
- nrows
- 300
- ncols
- 2
- details
- https://geodacenter.github.io/data-and-lab//spirals/
- hash
- 3203b0a6db37c1207b0f1727c980814f541ce0a222597475f9c91540b1d372f1
- filename
- spirals.csv
-
geodatasets.Datasetgeoda.stlouis
- url
- https://geodacenter.github.io/data-and-lab//data/stlouis.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- St Louis region county homicide counts and rates
- geometry_type
- Polygon
- nrows
- 78
- ncols
- 24
- details
- https://geodacenter.github.io/data-and-lab//stlouis/
- hash
- 181a17a12e9a2b2bfc9013f399e149da935e0d5cb95c3595128f67898c4365f3
- filename
- stlouis.zip
-
geodatasets.Datasetgeoda.tampa1
- url
- https://geodacenter.github.io/data-and-lab//data/TampaMSA.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2000 Census Tract Data for Tampa, FL MSA and counties
- geometry_type
- Polygon
- nrows
- 547
- ncols
- 31
- details
- https://geodacenter.github.io/data-and-lab//tampa1/
- hash
- 9a7ea0746138f62aa589e8377edafea48a7b1be0cdca2b38798ba21665bfb463
- filename
- TampaMSA.zip
- members
- ['TampaMSA/tampa_final_census2.gpkg']
-
geodatasets.Datasetgeoda.us_sdoh
- url
- https://geodacenter.github.io/data-and-lab//data/us-sdoh-2014.zip
- license
- NA
- attribution
- Center for Spatial Data Science, University of Chicago
- description
- 2014 US Social Determinants of Health Data
- geometry_type
- Polygon
- nrows
- 71901
- ncols
- 26
- details
- https://geodacenter.github.io/data-and-lab//us-sdoh/
- hash
- 076701725c4b67248f79c8b8a40e74f9ad9e194d3237e1858b3d20176a6562a5
- filename
- us-sdoh-2014.zip
- members
- ['us-sdoh-2014/us-sdoh-2014.shp', 'us-sdoh-2014/us-sdoh-2014.dbf', 'us-sdoh-2014/us-sdoh-2014.shx', 'us-sdoh-2014/us-sdoh-2014.prj']
-
-
geodatasets.Bunch1 items
-
geodatasets.Datasetny.bb
- url
- https://www.nyc.gov/assets/planning/download/zip/data-maps/open-data/nybb_16a.zip
- license
- NA
- attribution
- Department of City Planning (DCP)
- description
- The borough boundaries of New York City clipped to the shoreline at mean high tide for 2016.
- geometry_type
- Polygon
- details
- https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm
- nrows
- 5
- ncols
- 5
- hash
- a303be17630990455eb079777a6b31980549e9096d66d41ce0110761a7e2f92a
- filename
- nybb_16a.zip
- members
- ['nybb_16a/nybb.shp', 'nybb_16a/nybb.shx', 'nybb_16a/nybb.dbf', 'nybb_16a/nybb.prj']
-
-
geodatasets.Bunch1 items
-
geodatasets.Dataseteea.large_rivers
- url
- https://www.eea.europa.eu/data-and-maps/data/wise-large-rivers-and-large-lakes/zipped-shapefile-with-wise-large-rivers-vector-line/zipped-shapefile-with-wise-large-rivers-vector-line/at_download/file
- license
- ODC-by
- attribution
- European Environmental Agency
- description
- Large rivers in Europe that have a catchment area large than 50,000 km2.
- geometry_type
- LineString
- details
- https://www.eea.europa.eu/data-and-maps/data/wise-large-rivers-and-large-lakes
- nrows
- 20
- ncols
- 3
- hash
- 97b37b781cba30c2292122ba2bdfe2e156a791cefbdfedf611c8473facc6be50
- filename
- wise_large_rivers.zip
-
-
geodatasets.Bunch2 items
-
geodatasets.Datasetabs.australia
- url
- https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/AUS_2021_AUST_SHP_GDA2020.zip
- license
- CC BY 4.0
- attribution
- Australian Bureau of Statistics (ABS)
- description
- Australia land polygon including Norfolk Island, the Territory of Christmas Island, and the Territory of Cocos (Keeling) Islands.
- geometry_type
- Polygon
- nrows
- 2
- ncols
- 7
- details
- https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
- hash
- 086752a6b0b3978247be201f02e02cd4e3c4f36d4f4ca74802e6831083b67129
- filename
- AUS_2021_AUST_SHP_GDA2020.zip
-
geodatasets.Datasetabs.australia_states_territories
- url
- https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files/STE_2021_AUST_SHP_GDA2020.zip
- license
- CC BY 4.0
- attribution
- Australian Bureau of Statistics (ABS)
- description
- Australian state and territory boundaries.
- geometry_type
- Polygon
- nrows
- 10
- ncols
- 9
- details
- https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files
- hash
- d9b7f735de6085b37414faf011f796dda3c7f768c55e9dce01f96e790f399a21
- filename
- STE_2021_AUST_SHP_GDA2020.zip
-
-
geodatasets.Bunch1 items
-
geodatasets.Datasetnaturalearth.land
- url
- https://naciscdn.org/naturalearth/110m/physical/ne_110m_land.zip
- license
- CC0
- attribution
- Natural Earth
- description
- Land polygons including major islands in a 1:110m resolution.
- geometry_type
- Polygon
- details
- https://www.naturalearthdata.com/downloads/110m-physical-vectors/110m-land/
- nrows
- 127
- ncols
- 4
- hash
- 1926c621afd6ac67c3f36639bb1236134a48d82226dc675d3e3df53d02d2a3de
- filename
- ne_110m_land.zip
-
In [8]:
# -----------------------------------------
# INSTRUCTIONS: TASK 1
# -----------------------------------------
# Use the "read_file" and "get_path" functions appropriately
# to extract the "natregimes" data into an object named "counties"
counties = gpd.read_file(geodatasets.get_path("geoda.natregimes"))
In [13]:
# -----------------------------------------
# INSTRUCTIONS: TASK 2
# -----------------------------------------
# Print out the first few observations and the columns of "counties"
print(counties.head(), list(counties.columns))
REGIONS NOSOUTH POLY_ID NAME STATE_NAME STATE_FIPS \ 0 1.0 1.0 1 Lake of the Woods Minnesota 27 1 2.0 1.0 2 Ferry Washington 53 2 2.0 1.0 3 Stevens Washington 53 3 2.0 1.0 4 Okanogan Washington 53 4 2.0 1.0 5 Pend Oreille Washington 53 CNTY_FIPS FIPS STFIPS COFIPS ... GI59 GI69 GI79 \ 0 077 27077 27 77 ... 0.285235 0.372336 0.342104 1 019 53019 53 19 ... 0.256158 0.360665 0.361928 2 065 53065 53 65 ... 0.283999 0.394083 0.357566 3 047 53047 53 47 ... 0.258540 0.371218 0.381240 4 051 53051 53 51 ... 0.243263 0.365614 0.358706 GI89 FH60 FH70 FH80 FH90 West \ 0 0.336455 11.279621 5.4 5.663881 9.515860 0 1 0.360640 10.053476 2.6 10.079576 11.397059 1 2 0.369942 9.258437 5.6 6.812127 10.352015 1 3 0.394519 9.039900 8.1 10.084926 12.840340 1 4 0.387848 8.243930 4.1 7.557643 10.313002 1 geometry 0 POLYGON ((-95.34258 48.5467, -95.34081 48.7151... 1 POLYGON ((-118.8505 47.94969, -118.84732 48.47... 2 POLYGON ((-117.43777 48.04422, -117.54113 48.0... 3 POLYGON ((-118.97096 47.93928, -118.97293 47.9... 4 POLYGON ((-117.4375 49, -117.03098 49, -117.02... [5 rows x 74 columns] ['REGIONS', 'NOSOUTH', 'POLY_ID', 'NAME', 'STATE_NAME', 'STATE_FIPS', 'CNTY_FIPS', 'FIPS', 'STFIPS', 'COFIPS', 'FIPSNO', 'SOUTH', 'HR60', 'HR70', 'HR80', 'HR90', 'HC60', 'HC70', 'HC80', 'HC90', 'PO60', 'PO70', 'PO80', 'PO90', 'RD60', 'RD70', 'RD80', 'RD90', 'PS60', 'PS70', 'PS80', 'PS90', 'UE60', 'UE70', 'UE80', 'UE90', 'DV60', 'DV70', 'DV80', 'DV90', 'MA60', 'MA70', 'MA80', 'MA90', 'POL60', 'POL70', 'POL80', 'POL90', 'DNL60', 'DNL70', 'DNL80', 'DNL90', 'MFIL59', 'MFIL69', 'MFIL79', 'MFIL89', 'FP59', 'FP69', 'FP79', 'FP89', 'BLK60', 'BLK70', 'BLK80', 'BLK90', 'GI59', 'GI69', 'GI79', 'GI89', 'FH60', 'FH70', 'FH80', 'FH90', 'West', 'geometry']
In [25]:
# -----------------------------------------
# INSTRUCTIONS: TASK 3
# -----------------------------------------
# Construct a map visualization using the entire dataset in "counties"
# Make the title of the visualization "All US Counties"
counties.plot(edgecolor='black', color='orange', figsize=(11, 6))
plt.title("All US Counties")
plt.show()
In [24]:
# -----------------------------------------
# INSTRUCTIONS: TASK 4
# -----------------------------------------
# Create an object named "massachusetts" that only includes Massachusetts's counties from your "counties" object
# Construct a map visualization of Massachusetts's counties and give the visualization an appropriate title
massachusetts = counties[counties['STATE_NAME'] == 'Massachusetts']
massachusetts.plot(edgecolor='black', color='purple', figsize=(12, 6))
plt.title("Massachusetts Counties")
plt.show()
In [26]:
# -----------------------------------------
# INSTRUCTIONS: TASK 5
# -----------------------------------------
# Create an object named "mississippi" that only includes Mississippi's counties from your "counties" object
# Construct a map visualization of Mississippi's counties and give the visualization an appropriate title
mississippi = counties[counties['STATE_NAME'] == 'Mississippi']
mississippi.plot(edgecolor='black', color='coral', figsize=(10, 6))
plt.title("Mississippi Counties")
plt.show()
In [31]:
# -----------------------------------------
# INSTRUCTIONS: TASK 6
# -----------------------------------------
# Refer to counties columns and choose one numeric measure from 1 of the 5 columns: HR90, UE90, DV90, FP89, MA90
# HR90: Homicide Rate (1990)
# UE90: Unemployment Rate (1990)
# DV90: Divorce Rate (1990)
# FP89: % of Families Below Poverty Level (1989)
# MA90: Median Age (1990)
# Use your chosen measure to create two map plots:
# 1. A map of Massachusetts's counties whose color fills correspond to the value of your chosen measure
# 2. A map of Mississippi's counties whose color fills correspond to the value of your chosen measure
# HINT: Use the "column" argument in your plot function properly
massachusetts.plot(column='FP89', legend=True, edgecolor='darkblue', figsize=(11, 6))
plt.title("Massachusetts - % Families In Poverty (1989)")
plt.show()
mississippi.plot(column='FP89', legend=True, edgecolor='darkblue', figsize=(11, 6))
plt.title("Mississippi - % Families Below Poverty (1989)")
plt.show()
In [33]:
# -----------------------------------------
# INSTRUCTIONS: TASK 7
# -----------------------------------------
# Recreate your prior two plots from the previous cell, except this time make the color fill scale the same across both maps
# HINT: "vmin" and "vmax" arguments in your plot function can help in this regard
min = counties['FP89'].min()
max = counties['FP89'].max()
massachusetts.plot(column='FP89', edgecolor='darkblue', legend=True, figsize=(11, 6), vmin=min, vmax=max)
plt.title("Massachusetts - % Families Below Poverty (1989)")
plt.show()
mississippi.plot(column='FP89', edgecolor='darkblue', legend=True, figsize=(11, 6), vmin=min, vmax=max)
plt.title("Mississippi - % Families Below Poverty (1989)")
plt.show()
In [34]:
# -----------------------------------------
# INSTRUCTIONS: TASK 8
# -----------------------------------------
# Refer to counties columns and choose a SECOND numeric measure from 1 of the 5 columns: HR90, UE90, DV90, FP89, MA90
# HR90: Homicide Rate (1990)
# UE90: Unemployment Rate (1990)
# DV90: Divorce Rate (1990)
# FP90: % of Families Below Poverty Level (1989)
# MA90: Median Age (1990)
# Use your second chosen measure to create two map plots:
# 1. A map of Massachusetts's counties whose color fills correspond to the value of your chosen measure
# 2. A map of Mississippi's counties whose color fills correspond to the value of your chosen measure
# Also, the two maps should use the same MINIMUM and MAXIMUM for your color scale.
min_age = counties['MA90'].min()
max_age = counties['MA90'].max()
# Massachusetts map for Median Age
massachusetts.plot(column='MA90', edgecolor='darkblue', legend=True, figsize=(11, 6), vmin=min_age, vmax=max_age)
plt.title("Massachusetts - Median Age (1990)")
plt.show()
# Mississippi map for Median Age
mississippi.plot(column='MA90', edgecolor='darkblue', legend=True, figsize=(11, 6), vmin=min_age, vmax=max_age)
plt.title("Mississippi - Median Age (1990)")
plt.show()